

 Laboratory on Human-Environment Relations in Urban Systems

Fall 2024

Last week

- MFA and EW-MFA: definitions
- Main material categories in EW-MFA
- EW-MFA indicators
- Data Sources
- How to perform an EW-MFA
- Cross-country comparisons

Course outline

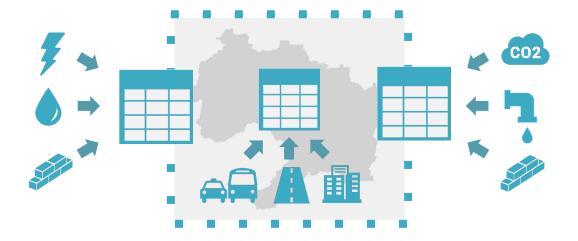
		8:15 - 9:00 and 9:15 - 10:00		13:15 - 14:00	14:15 - 15:00
Block I: EW-MFA global / national	W1 - Sep 12	Introduction to the course and general concepts	All	Exercise	Project
	W2 - Sep 19	EW – MFA and EW – MFA in different countries	FMC	Exercise	Project
	W3 - Sep 26	EW – MFA in the Swiss context, Urban Metabolism	External Guest – Florian Kohler	Exercise	Project
	W4 - Oct 03	EW – MFA in the Swiss context: Cantons and Circular Economy	FMC	Exercise	Project
Block II: MFA regional / urban Block III: Social sciences and public policy	W5 - Oct 10	The Service-Stock-Flows Nexus	CRB	Exercise	Project
	W6 - Oct 17	Dynamic MFA	External Guest – Stefan Pauliuk	Exercise	Project
	Oct 24	Autumn break			
	W7 - Oct 31	Spatial MFA	FMC	Exercise	Project
	W8 - Nov 07	Input-Output Analysis and Material Flow Cost Accounting	External Guest – Vincent Moreau	Exercise	Project
	W9 - Nov 14	MFA and Uncertainty	External guest – Stefan Pauliuk	Exercise	Project
	W10 - Nov 21	Case studies: Waste management in Indonesia / Critical Raw Materials in the Swiss context	GF & FMC	Exercise	Project
	W11 - Nov 28	Social Metabolism	CRB	Exercise	Project
	W12 - Dec 05	Agent-based model	CRB, FMC, MAH, SLC	Past exam	Project
	W13 - Dec 12	Group Project Presentation	CRB, FMC, MAH	Project	Project
	W14 - Dec 19	Group Project Presentation	CRB, FMC, MAH	Project	Project

Content of lecture

- Urban Metabolism vs. Urban MFA
- System boundaries of cities
- Accounting approaches
- Where to find data
- Insights from Urban MFA's and policies

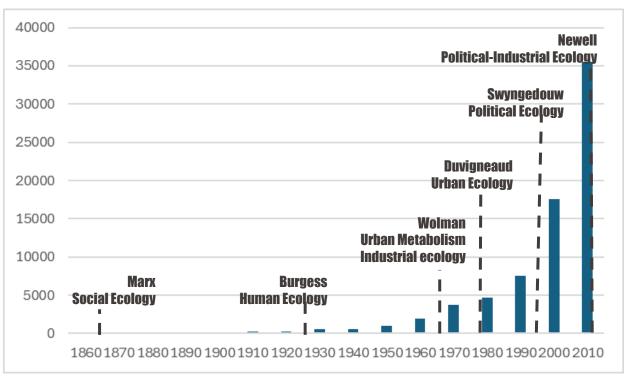

Urban Metabolism vs Urban MFA

Definitions, relevance



Urban Metabolism ≠ **Urban MFA**

What is Urban Metabolism?



What is Urban Metabolism?

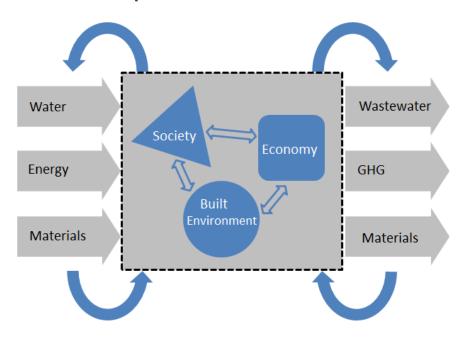
An (unconsolidated) field studying urban flow/stocks and actors from a systemic perspective

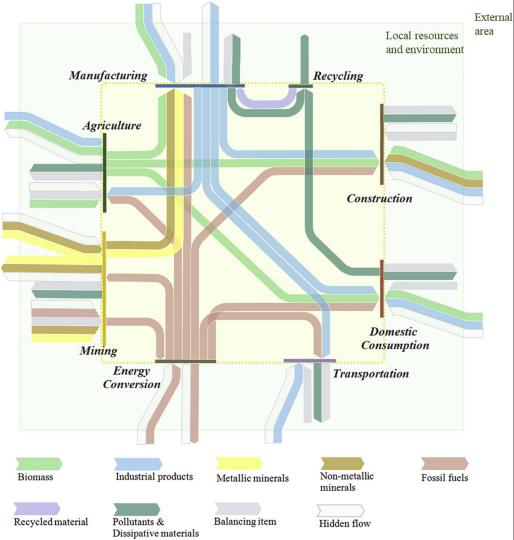
What is Urban Metabolism?

 Laboratory on Human-Environment Relations in Urban Systems

Use of « urban metabolism » over time

Source: Constellate


Definitions: Urban Metabolism


- ... a model to facilitate the description and analysis of the flows of the materials and energy within cities (material flow analysis of a city).
- Industrial ecology: UM as the total technical and socio-economic processes within a city. Mass-balance accounting (MFA) of the related flows of water, materials and energy, input-output; city-hinterland.
- Marxist ecology / Urban political ecology (Human geography): UM to characterize alienation of nature from society under capitalist regimes and urbanization, social power and the shaping of urban space. Qualitative analyses of the socioeconomic relations shaping the infrastructure, space and metabolism; dialectic nature-society.
- Urban ecology: UM as a complex system, the urban system as an ecosystem, structure and function, transformative processes emerging from system properties.
 Complex system models; nature-society hybridity.

Why is Urban Metabolism relevant?

Interrelationship between urban activities and flows

System boundaries of cities

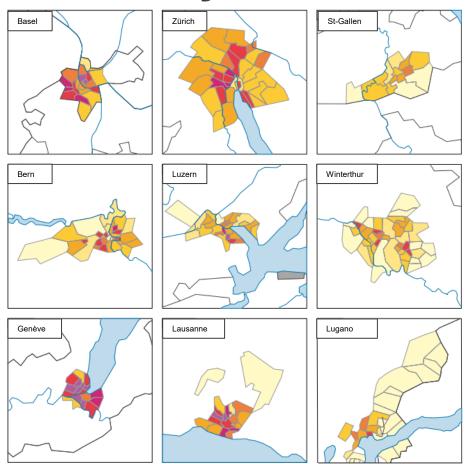
Reminder: Steps of MFA

Step I: System definition

Problem definition, definition of system boundaries, selection of processes and flows of materials/substances (qualitative model)

Step II: Measurement

Data collection of flows and stocks of materials/substances and characterization of uncertainties (measurements, literature data, estimations)


Step III: Calculation

Calculation of unknown quantities by balancing of materials based on the principle of mass conservation (MFA software)

Step IV: Illustration and interpretation Sources, stocks, flows and sinks

Step V: Recommendations How can the system be optimized?

What is a city?

Habitants* par km²

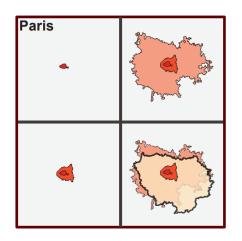
* Population résidante permanente au 01.01.2022 (= 31.12.2021)

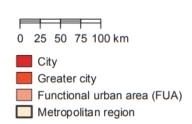
 Laboratory on Human-Environment Relations in Urban Systems

Source: OFS, 2022

What is a city?

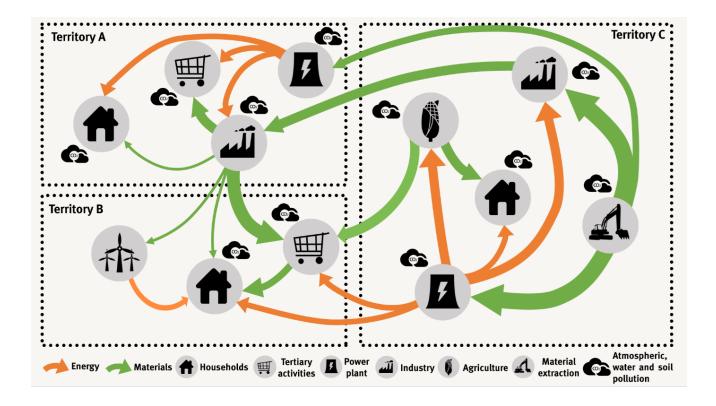
Spatial units


Data are collected for several levels:


 A City is a local administrative unit (LAU) where the majority of the population lives in an urban centre of at least 50 000 inhabitants.
 The city of Paris has approximately 2 200 000 inhabitants

 The Greater city is an approximation of the urban centre when this stretches far beyond the administrative city boundaries.
 The greater city of Paris has approximately 6 700 000 inhabitants. The Functional Urban Area consists of a city and its commuting zone.

The functional urban area of Paris has approximately 11 800 000 inhabitants.



 Laboratory on Human-Environment Relations in Urban Systems

Source: Eurostat, 2016

EPFL

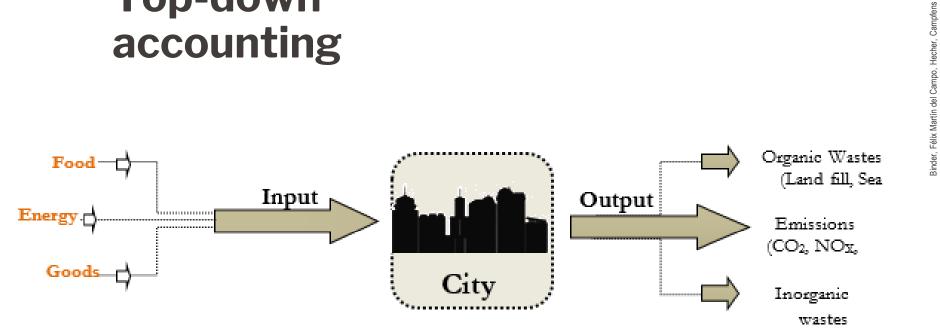
What boundaries to choose?

Global trends and demands, international markets and actors and regional networks are projected top-down AREA APPROACH **FLOW ANALYSIS Densities** Energy Air & Heat Public space Waterfronts Water **Parks** Food **Public transport** Cargo Street sections Waste Sand & Sediments **Parking Ownership People Employment** Biota **Health services** Data Local actors and assets, urban trends and demands and personal networks arise

bottom-up

Accounting approaches and methods

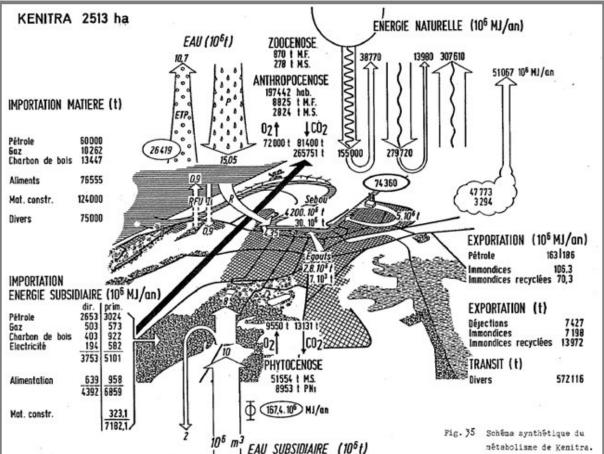
Source : Behance


Accounting approaches and methods

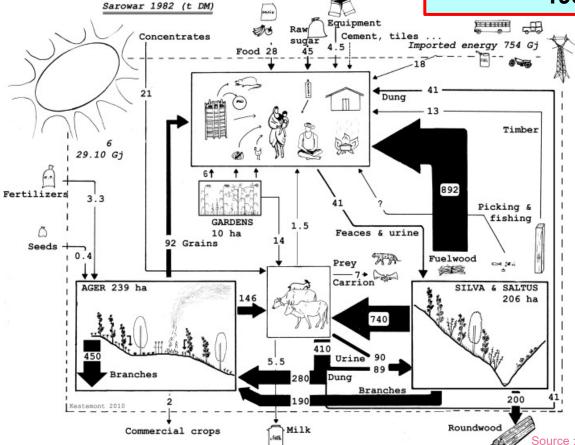
- Top-down
- Bottom-up
- Territorial-based
- Consumption-based

Top-down vs Bottom-up


Top-down accounting


Bottom-up accounting

Kenitra, Morocco, 1982


Bottom-up accounting

Kenitra, Morocco, 1982

Source: Kempeneers, 1982

Sarowar village, India, 1982

 Laboratory on Human-Environment Relations in Urban Systems

Source: Kestemont & Kerkhove, 2010

Top-down vs Bottom-up.

Pro's of top-down

- Comparable to other years/cities
- Frequently published data
- Comparable to economic & urban data

Pro's of bottom-up

- Reliable data
- Relatively easy to develop
- Provides behavioural aspects

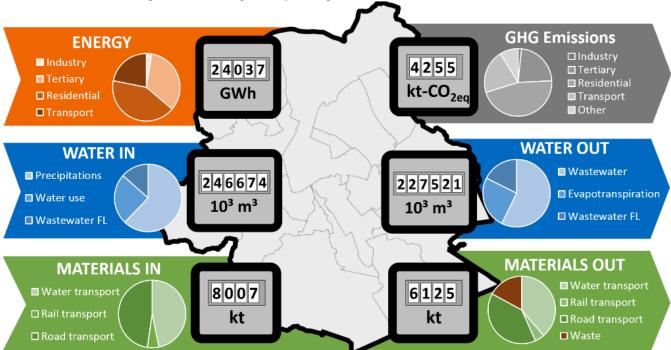
Con's of top-down

- Not available in data scarce environments
- Treats city homogeneously
- Requires institutional infrastructure
- Not always enough knowledge on what's measured

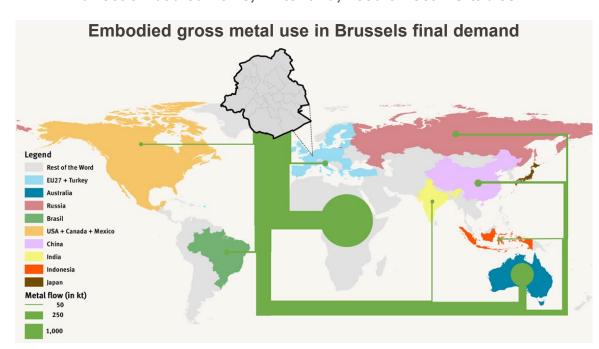
Con's of bottom-up

- Difficult to reproduce
- Time consuming

Territorial/production vs Consumption-based accounting

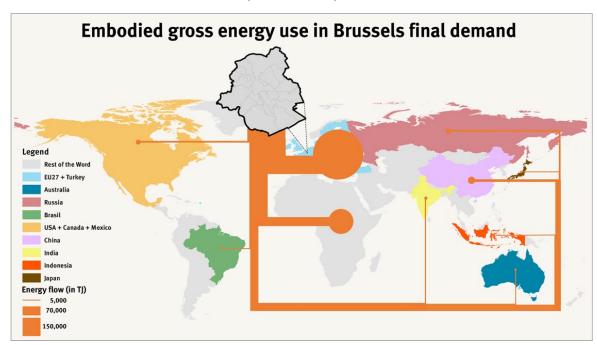


Territorial/production vs Brussels, 2010 Consumption-based accounting


Focused on your territory, frequently available data, sometimes accurate data

Consumption-based accounting

Brussels, 2010


Indirect/embodied flows, hinterland, need of local IO tables

Consumption-based accounting

Brussels, 2010

Indirect/embodied flows, hinterland, need of local IO tables

Territorial/production vs Consumption-based accounting

Pro's of "territorial"

- Accurate data
- Frequently published data
- Enables time series
- Appropriate at urban scale
- Easy to use
- Large pool of case studies
- Available spatial data

Pro's of "consumption"

- Indirect flows
- Spatialises hinterland
- Link global-local
- Systemic overview

Con's of "territorial"

- No indirect flows
- No standard methodology
- Some flows are not available

Con's of "consumption"

- Uncertainties
- No IO tables at urban level
- Needs experts to use them

No unique accounting method

- Depending on the available data (bottom-up, top-down, local IO tables, etc.)
- Depending on the research question (what are you trying to answer?)

No unique accounting method

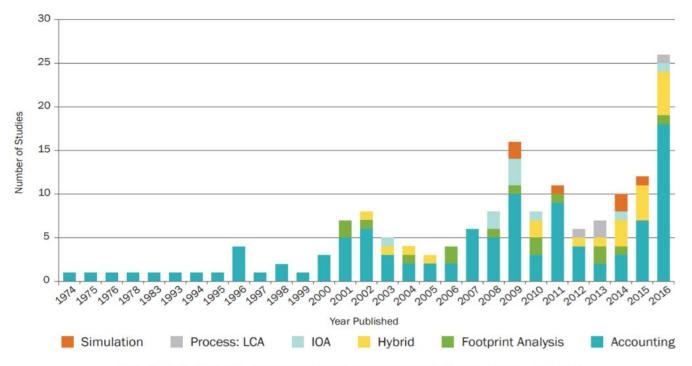
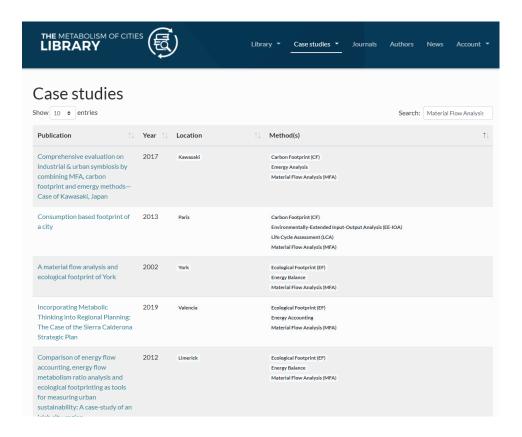
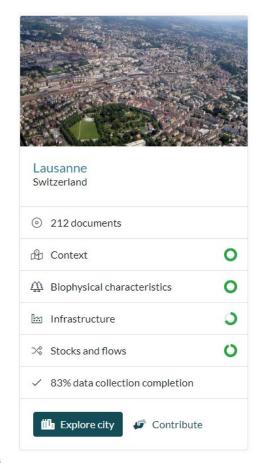


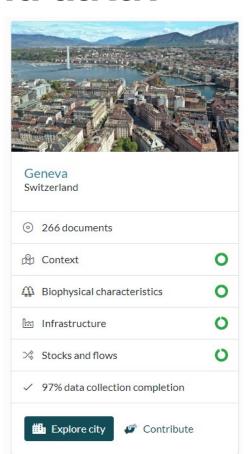
Figure 5: Number of urban metabolism assessment studies over time, showing the increasing diversity of approaches utilised.

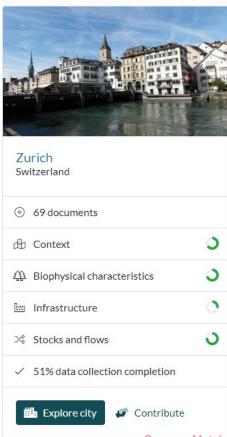
Where to find data?


EPFL

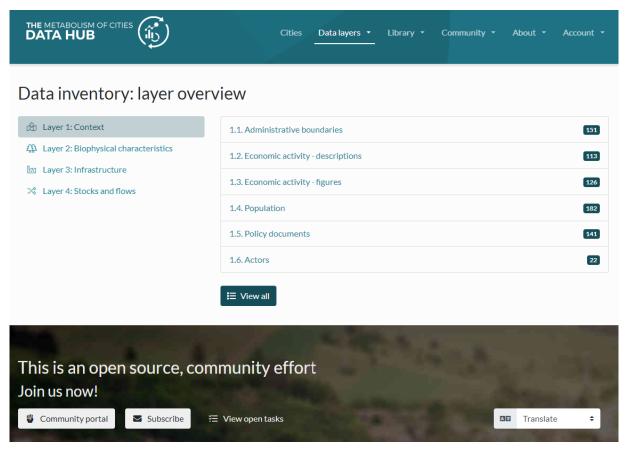
Urban metabolism studies




Where to find data?


 Approx. 70 urban metabolism studies using specifically MFA methods

Where to find data?



 Laboratory on Human-Environment Relations in Urban Systems

Source: Metabolism of Cities

EPFL

Where to find data?

Binder, Félix Martín del Campo, Hecher, Campfens

Where to find data?

3 00 Land Hea

Data inventory: layer overview

Layer 1: Context

Layer 2: Biophysical characteristics

Layer 3: Infrastructure

Layer 4: Stocks and flows

3.00. Land Use	120
3.01. Agriculture	110
3.02. Construction	59
3.03. Electricity generation	90
3.04. Electricity transmission and distribution	60
3.05. Energy storage	26
3.06. Fossil fuel production and distribution	52
3.07. Fishing	33
3.08. Food service	35
3.09. Forestry	37
3.10. Hotels and lodging	[37]
3.11. Manufacturing: food products	[43]
3.12. Manufacturing: beverages	29
3.13. Manufacturing: textiles and clothing	30

 Laboratory on Human-Environment Relations in Urban Systems

ource: Metabolism of Cities

 Table 6
 Comparison between Cape Town, Paris, Hamburg, Vienna and Leipzig. All indicators are t/cap

	Hamburg 2001	Vienna 2001	Leipzig 2001	Paris (PPC) 2003	Paris (Île-de-France) 2003	Cape Town 2010*	Cape Town 2013
Total population (million)	3.26	2.12	1.09	6.32	11.3	3.50	3.85
Total km ²	8,616	4,596	4,386	762	12,012		2,461
Density (capita/km ²)	379	461	249	8,295	937	12,059	1,564
Domestic material consumption	11.4	8.8	25.3	4.6	7.1	11.3	3.5
Domestic extraction used				0.0	2.1		1.6
Imports				11.0	10.2		5.8**
Exports				7.9	5.2		3.9**
Domestic processed output				4.3	6.8		2.3
Physical trade balance				3.1	5.0		1.9
Direct material input				11.0	12.3		6.2**
Direct material output				12.2	12.0		7.3**
Net addition to stock			0.7	2.6		2.5	

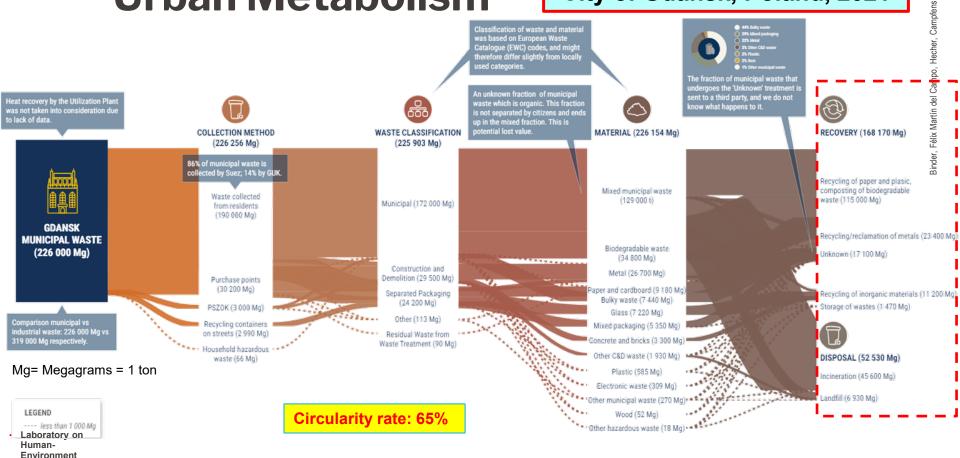
Note: *This study was published in 2010 but the data sources date back to previous years. **These figures include throughput.

Laboratory on Human-Environment Relations in Urban Systems

Insights from Urban MFA's and policies

Binder, Félix Martín del Campo, Hecher, Campfens

Insights from Urban Metabolism


- Cities are not at all self-sufficient
 - This reliance on external flows highlights the vulnerability of cities to disruptions in supply chains and resource availability, especially as population growth and urbanization continue
- Scale matters
 - To optimize resource management and urban planning, it's crucial to understand the specific context of the scale at which material flows are being assessed
- Difficult to make circular
 - To create more circular systems, cities would need to redesign production, consumption, and waste processes. This includes strategies that prioritize infrastructure for material recovery, encouraging modular and reusable design, and shifting economic incentives toward resource conservation

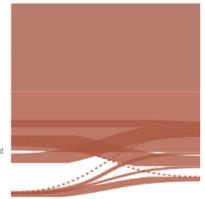
EPFL Urban Metabolism

Relations in

Urban Systems

City of Gdansk, Poland, 2021

Source: Metabolic Institute


Urban Metabolism

WASTE COLLECTION (364 700 Mg)

Municipal Collection (341 000 Mg)

Separated waste dropped off at buy-back centers (12 000 Mg)

> Waste drop-off at collection sites (11 700 Mg)

City of Krakow, Poland, 2021

MATERIAL (365 350 Mg)

Mixed municipal waste (222 000 Mg)

Paper, plastic, metal and glass (80 900 Mg)

Biodegradable (40 900 Mg)

Bulky (15 800 Mg)

Other (5 750 Mg)

239 000 Mg/y (65%) of municipal waste is incinerated. This is a mixture of waste sent directly to incineration as well as residuals from the waste separation process. In 🍍 terms of revalorization, incineration is a low form of waste treatment (second lowest value after landfill). This is a large value loss.

13 000 Mg/y (4%) of municipal waste goes

to landfill.

DISPOSAL (252 000 Mg)

Incineration (239 000 Mg)

Landfilling (13 000 Mg)

OTHER (45 430 Mg)

Stored (21 500 Mg)

Processing Losses (15 700 Mg)

RECOVERY (68 220 Mg)

Recycling of paper, plastic, metals, glass and composting of biodegradable waste (61 700 Ma)

Refuse Derived Fuel (6.520 Mg)

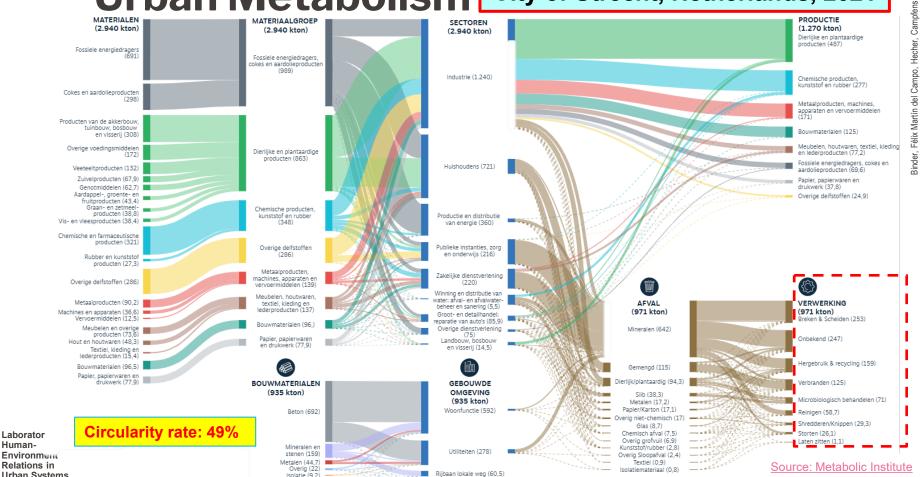
Source: Metabolic Institute

61 700 Mg/y (17%) of municipal waste is recycled. The municipality's recycling goal is 50%. There is a room for nprovement and value recovery here.

Circularity rate: 17%

KRAKOW **MUNICIPAL WASTE** (365 000 Mg) Mg= Megagrams = 1 ton

Laboratory on Human-Environment Relations in **Urban Systems** Binder, Félix Martín del Campo, Hechel


42

Laborator

Urban Systems

Human-

Urban Metabolism City of Utrecht, Netherlands, 2021

Voetpad (2.7)

Parkeervlak (1,2) Fietspad (0.9)

Isolatie (9.2)

Hout (5,6)

Sinder, Félix Martín del Campo, Hecher, Campfens

Insights from Policies


- Cities are not at all self-sufficient Need to prioritize local resources.
 - Policies that support localized systems for food, energy, and material recovery can significantly enhance urban resilience.
- Scale matters Adapt Circular Economy strategies
 - A city-level strategy might prioritize household recycling and community-based resource recovery, while regional policies might target industrial by-products and broader recycling infrastructure
- Difficult to make circular Support Circular Design and Waste Infrastructure.
 - Circular economy policies can drive eco-design and modular construction approaches, which reduce waste at the source and allow materials to be recovered more easily.

Binder, Félix Martín del Campo, Hecher, Campfens

Circular Economy policies at city scale

Circular Economy policies - Brussels

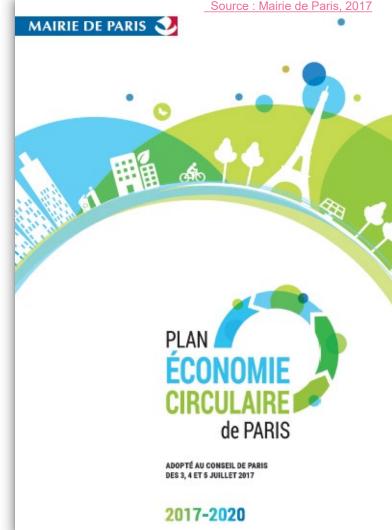
- Urban metabolism study in 2014-2015
- 3 ministries, 4 administrations
- 4 strategic themes
 - Transversal (43 measures): define a favorable normative and legal framework
 - Sectoral (48 measures): Construction (13), resources and wastes (24), logistics (7), retail (4)
 - Territorial (8 measures)
 - Governance (12 measures)

PROGRAMME RÉGIONAL EN ECONOMIE CIRCULAIRE

2016 - 2020

Mobiliser les ressources et minimiser les richesses perdues :

Pour une économie régionale innovante



Mars 2016

Circular Economy policies - Paris

- Urban metabolism study in 2007
- Etats Généraux de l'Economie Circulaire in 2015 (120 organisation proposed 65 initiatives)
- First roadmap in 2017 (15 actions for 3 scales)
 - Planning and construction (3)
 - Reduction, reuse and repair (4)
 - Support for actors (5)
 - Public procurement (2)
 - Responsible consumption (1)
- Second roadmap from 2018 to 2019

Circular Economy policies - London

- Urban metabolism study in 2002
- ReLondon (formerly LWARB) governmental entity, CE Route map
 - Built environment (13 actions): CE design (5), managing building materials (4), operation of buildings (4)
 - Food (9 actions): preventing avoidable food waste (3), valuing food waste and food surplus (3), maximising use of urban space for food growing (3)
 - Textiles (10 actions): design (1), embedding CE into the textile supply chain (6), re-use and recycling
 - Electricals (11): design (2), extending the life of products (6), and effective collection and recycling (3) aspects.
 - Plastics (7 actions)

Thank you for your attention!